Der Brennpunkt der Normalparabel, der Kreismittelpunkt usw.

Vorbemerkung

Ein beliebiger Kreis mit der Gleichung $(x-x_0)^2+(y-y_0)^2=r^2$ hat in homogenen Koordinaten die Gleichung $x^2-2\cdot x\cdot x_0\cdot z+x_0^2\cdot z^2+y^2-2\cdot y\cdot y_0\cdot z+y_0^2\cdot z^2=r^2\cdot z^2$ und geht stets durch die beiden imaginären Kreispunkte $(\pm 1:i:0)$.

Eine Gerade mit $y=m\cdot x+n$ geht genau dann durch (1:i:0), wenn m=i ist, und genau dann durch (-1:i:0), wenn m=-i ist.

Zum Brennpunkt einer Parabel

Eine Gerade mit $y=m\cdot x+n$ ist genau dann Tangente an die Normalparabel mit $y=x^2$ und Brennweite $f=\frac{1}{4}$, wenn $n=-\frac{m^2}{4}=-f\cdot m^2$ ist. Für $m=\pm i$ ist n=f.

Die beiden (imaginären) Tangenten durch die Kreispunkte sind dann gegeben durch $y=\pm i\cdot x+f$; sie haben den reellen Schnittpunkt $\begin{pmatrix} 0 \\ f \end{pmatrix}$, also den Brennpunkt der Normalparabel.

Zum Mittelpunkt eines Kreises

Eine Gerade mit $y=m\cdot x+n$ ist genau dann Tangente an den Kreis mit $x^2+y^2=r^2$, wenn $n^2=r^2\cdot \left(m^2+1\right)$ ist. Für $m=\pm i$ ist n=0.

Die beiden (imaginären) Tangenten durch die Kreispunkte sind dann gegeben durch $y=\pm i\cdot x$; sie haben den reellen Schnittpunkt $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, also den Mittelpunkt des Kreises.

(Vielleicht hat man bis jetzt zu wissen gemeint, was eine Tangente ist?)

Zu den Brennpunkten einer Ellipse

Eine Gerade mit $y=m\cdot x+n$ ist genau dann Tangente an die Ellipse mit $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ mit der Brennweite $f=\sqrt{a^2-b^2}$, wenn $n^2=a^2\cdot m^2+b^2$ ist. Für $m=\pm i$ ist $n^2=-f^2$.

Durch (1:i:0) verlaufen die Tangenten mit $y=i\cdot x\pm i\cdot f=i\cdot (x\pm f)$, durch (-1:i:0) verlaufen die Tangenten mit $y=-i\cdot x\pm i\cdot f=i\cdot (-x\pm f)$.

Die Tangenten verlaufen daher durch die beiden Brennpunkte.

Polaren und Mittelpunkte:

Bei der Parabel mit $y=x^2$ gehört zum Punkt $\begin{pmatrix} u \\ v \end{pmatrix}$ die Polare mit $y=2\cdot u\cdot x-v$. Die Polare des

Brennpunkts $\begin{pmatrix} 0 \\ 1/4 \end{pmatrix}$ hat die Gleichung y = $-\frac{1}{4}$, ist also die Leitgerade.

Bei der Ellipse mit $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ gehört zum Punkt $\begin{pmatrix} u \\ v \end{pmatrix}$ die Polare mit $\frac{u \cdot x}{a^2} + \frac{v \cdot y}{b^2} = 1$. Die Polare des

Brennpunkts $\begin{pmatrix} \sqrt{a^2-b^2} \\ 0 \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}$ hat die Gleichung $x = \frac{a^2}{f}$, ist also eine Leitgerade.

Die Polare zum Punkt (u:v:1) hat die homogene Gleichung $\frac{u\cdot x}{a^2} + \frac{v\cdot y}{b^2} = z$. Die Polare des Ellipsen-Mittelpunkts ist also die Ferngerade mit z=0.